

Our sustainable (?) world

- Sustainable development aims at equity and equilibrium.
- We use resources many times more than poor regions in the world.
- There is not enough space to spread the western way of living.

Holland: becoming Wet Wet Wetter

Threefold water surge

- Sea level rise
- More precipitation
- Increased fresh water supply from the mountains

- Does CO₂ reduction help to avoid this soon?
 Not within 50 years. The Great Change has commenced
 - We'd better take care that we can cope

τ̃uDelft

Depleting material resources

- Two directions possible:
 - Use more renewables (also in bio-synthetics)
 - Use 100% recyclable products
- Great opportunities for a circular economy
 - Do not export waste to other countries anymore
 - Retrieve all valuable matter from products (The Netherlands is a poor country in terms of resources)

Energy is a bigger problem

Our own natural gas fields will be emptied within 25 years.

Import from other regions has has some considerations:

- ecological
- political
- economical
- ethical

And even then we will be **done** with fossils and uranium within 75 years.

[KEMA/Hoogakker, 2010]

ŤUDelft

Urban functions have different energy demand patterns

Cities are not just a collection of individual buildings

Heat is solvable.

- The natural environment can function as a source of heat exchange
- The built environment offers abundance of low-caloric (waste) heat
- Contra-patterns of heat and cold demand can be balanced
- Low-caloric heat can be **inter-seasonally stored** in shallow aquifers
- There is enough sun per hectare to provide 636 households with heat
- To bridge seasonal change we can store hot water in **deep aquifers** (>2 km)

ŤUDelft

Knowing the quantities

Offices

Total approximately 100 kWh/m² GFA

Western, luxury households

Dwelling (reasonably modern)

- Heat: 1000 m³ gas = 8.8 MWh_{th}
- Electricity: 3500 kWh = 3.5 MWh_{el}
- Total: 12.3 MWh (all-electric) ~ 123 kWh/m²

<u>Mobility</u>

Car: 20,000 km, 8 l/100 km, so 1600 l diesel/petrol = 14 MWh

Passive House standard:

15 kWh/m²

• With an electro engine 4 x as efficient \rightarrow 3.5 MWh needed

Total household demand in an all-electric society, without savings: 15.8 MWh ~ 158 kWh/m²

ŤUDelft

Energy = space		
Annual yield of a hectare $(10,000 \text{ m}^2)$ of land or roof with:		
Solar collectors (thermal), just heatSolar cells (PV), elektric total	3500 MWh 960 MWh	636 hh _{th!} 61 hh _{tot}
Wind, 2MW turbinesWind, Turby	275 MWh 12 MWh	17 hh _{tot} 0.8 hh _{tot}
Biomass, forest maintenanceBiomass, cuttings from woodsBiomassa, cuttings from wetlands	189 MWh 47 MWh 46 MWh	12 hh _{tot} 3 hh _{tot} 3 hh _{tot}
 Bio-fuel, rapeseed Bio-fuel, sugarbeets Bio-fuel, algae (theoretical maximum) 	110 MWh 330 MWh 1780 MWh	7 hh _{tot} 21 hh _{tot} 113 hh _{tot}
We need every square meter of surface when the fossils are gone!		

ŤUDelft

Only three roofs types allowed from now

Red: The Energy Roof

- Generator of heat and power
- Rain water collector
- Reflector and active cooler

Green: The Vegetation Roof

- Rain water buffer
- Improver of micro-climates
- Moderator of temperatures
- Park landscape for people

Blue: The Greenhouse Roof

- Generator of heat and power
- Rain water collector
- Passive cooler
- CO₂ buffer and urban agriculture
- Winter garden and domestic restaurant

TUDelft

